fbpx
15 de novembro de 2024

O ALMA reescreve a história da formação estelar intensa do Universo

Esta montagem combina dados do ALMA com imagens do Telescópio Espacial Hubble da NASA/ESA, de cinco galáxias distantes. As imagens ALMA, em vermelho, mostram as galáxias distantes de fundo sendo distorcidas pelo efeito de lente gravitacional produzido pelas galáxias que se encontram em primeiro plano, e que são apresentadas a azul com dados do Hubble. As galáxias de fundo aparecem em forma de anéis de luz, os chamados anéis de Einstein, rodeando as galáxias mais próximas. Crédito: ALMA (ESO/NRAO/NAOJ), J. Vieira et al.
Esta montagem combina dados do ALMA com imagens do Telescópio Espacial Hubble da NASA/ESA, de cinco galáxias distantes. As imagens ALMA, em vermelho, mostram as galáxias distantes de fundo sendo distorcidas pelo efeito de lente gravitacional produzido pelas galáxias que se encontram em primeiro plano, e que são apresentadas a azul com dados do Hubble. As galáxias de fundo aparecem em forma de anéis de luz, os chamados anéis de Einstein, rodeando as galáxias mais próximas.
Crédito:
ALMA (ESO/NRAO/NAOJ), J. Vieira et al.

observatory_150105Observações feitas com o Atacama Large Millimeter/submillimeter Array (ALMA) mostram que a formação estelar mais intensa no cosmos ocorreu muito mais cedo do que o que se supunha anteriormente. Os resultados estão publicados numa série de artigos científicos que sairão na revista Nature a 14 de março de 2013 e na revista especializada Astrophysical Journal. Este trabalho é o exemplo mais recente das descobertas que estão sendo feitas com o ALMA, o novo observatório internacional que está sendo inaugurado hoje.

Acredita-se que os episódios de formação estelar mais intensos ocorreram no Universo primordial, em galáxias brilhantes de grande massa. Estas galáxias com formação estelar explosiva convertem enormes reservatórios de gás e poeira cósmica em novas estrelas a uma taxa impressionante – muitas centenas de vezes mais depressa do que a formação estelar que ocorre nas mais plácidas galáxias em espiral como a nossa Galáxia, a Via Láctea. Ao olhar para longe no espaço, para galáxias tão distantes que a sua luz demorou muitos bilhões de anos para chegar até nós, os astrônomos conseguem observar esta fase bem atarefada do Universo jovem.

“Quanto mais distante estiver uma galáxia, mais longe no tempo a estamos vendo, por isso ao medir distâncias podemos reconstruir a linha cronológica de quão vigorosa é a formação estelar no Universo nas diferentes épocas da sua história de 13,7 bilhões de anos”, disse Joaquin Vieira (California Institute of Technology, EUA), que liderou a equipe e é também o autor principal do artigo na revista Nature.

A equipe internacional de pesquisadores descobriu inicialmente estas distantes e enigmáticas galáxias com formação estelar explosiva, utilizando o South Pole Telescope (SPT) de 10 metros, da Fundação Científica Nacional dos EUA, e  em seguida o ALMA para observar as galáxias com mais detalhe e explorar a formação estelar no Universo primordial. Os cientistas ficaram surpreendidos ao descobrir que muitas destas galáxias longínquas e poeirentas que estão a formar estrelas, se encontram ainda mais longe do que o esperado, o que significa que, em média, os episódios de formação estelar intensa ocorreram há 12 bilhões de anos atrás, quando o Universo tinha menos de 2 bilhões de anos – um bilhão de anos mais cedo do que o que se pensava anteriormente.

Duas destas galáxias são as mais distantes deste tipo já observadas – estão tão distantes que a sua luz começou a sua viagem quando o Universo tinha apenas um bilhão de anos. Mais ainda, numa destas galáxias recorde, detectou-se água entre as moléculas observadas, o que marca as observações de água mais distantes no cosmos publicadas até hoje.

A equipe usou a sensibilidade sem precedentes do ALMA para capturar a radiação emitida por 26 destas galáxias no comprimento de onda de três milímetros. Esta radiação a comprimentos de onda característicos é produzida por moléculas de gás nestas galáxias, sendo os comprimentos de onda esticados pela expansão do Universo ao longo dos bilhões de anos que a luz demora a chegar até nós. Ao medir os comprimentos de onda esticados, os astrônomos podem calcular quanto tempo a luz demorou para chegar e assim colocar cada galáxia no lugar certo da história cósmica.

“A sensibilidade do ALMA e a observação em largos intervalos de comprimentos de onda que o telescópio permite, significam que podemos medir cada galáxia em apenas alguns minutos – cerca de cem vezes mais depressa do que antes”, disse Axel Weiss (Max-Planck-Institut für Radioastronomie, Bona, Alemanha), que liderou o trabalho da medição das distâncias às galáxias. “Anteriormente, uma medição como esta teria sido um laborioso processo de combinar dados, tanto de telescópios ópticos como de rádio telescópios”.

Na maioria dos casos, as observações ALMA foram suficientes para determinar as distâncias, no entanto, para algumas das galáxias a equipe combinou os dados ALMA com medições obtidas com outros telescópios, incluindo o Atacama Pathfinder Experiment (APEX) e o Very Large Telescope do ESO [1].

Os astrônomos utilizaram apenas uma rede parcial com 16 das 66 antenas gigantes que fazem parte do ALMA, uma vez que o observatório na altura ainda estava a ser construído, a uma altitude de 5000 metros no remoto Planalto do Chajnantor, nos Andes chilenos. Quando estiver completo, o ALMA será ainda mais sensível e poderá detectar galáxias ainda mais tênues. Enquanto isso, os astrônomos observaram as mais brilhantes e além disso tiveram uma ajuda da natureza: utilizaram lentes gravitacionais, um efeito previsto pela teoria da relatividade geral de Einstein, onde a radiação emitida por uma galáxia distante é distorcida pelo efeito gravitacional de uma galáxia mais próxima de nós, que atua como uma lente, fazendo com que a fonte longínqua pareça mais brilhante.

Para compreender precisamente de quanto é que a lente gravitacional tornava mais brilhante as galáxias de fundo, a equipe obteve imagens muito nítidas destas galáxias, utilizando observações ALMA no comprimento de onda de 0,9 milímetros.

Esta figura esquemática mostra como é que a luz emitida por uma galáxia longínqua é distorcida pelo efeito gravitacional de uma galáxia mais próxima, que atua como uma lente, fazendo com que a fonte distante apareça distorcida mas mais brilhante e formando característicos anéis de luz, os chamados anéis de Eisntein. Uma análise cuidadosa desta distorção revelou que algumas destas galáxias com formação estelar intensa apresentam um brilho equivalente a 40 trilhões de sóis, sendo que as lentes gravitacionais amplificaram até 22 vezes este valor. Crédito: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.
Esta figura esquemática mostra como é que a luz emitida por uma galáxia longínqua é distorcida pelo efeito gravitacional de uma galáxia mais próxima, que atua como uma lente, fazendo com que a fonte distante apareça distorcida mas mais brilhante e formando característicos anéis de luz, os chamados anéis de Eisntein. Uma análise cuidadosa desta distorção revelou que algumas destas galáxias com formação estelar intensa apresentam um brilho equivalente a 40 trilhões de sóis, sendo que as lentes gravitacionais amplificaram até 22 vezes este valor.
Crédito:
ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

“Estas belas imagens obtidas com o ALMA mostram as galáxias de fundo distorcidas em arcos múltiplos de luz, conhecidos como anéis de Einstein, que rodeiam as galáxias mais próximas”, disse Yashar Hezaveh (McGill University, Montreal, Canadá), que liderou o estudo das lentes gravitacionais. “Estamos utilizando a enorme quantidade de matéria escura que rodeia as galáxias no meio do caminho como um telescópio cósmico, para fazer com que galáxias ainda mais distantes pareçam maiores e mais brilhantes”.

A análise da distorção revela que algumas das galáxias longínquas com formação estelar intensa apresentam um brilho equivalente a 40 trilhões de sóis, sendo que as lentes gravitacionais amplificaram até 22 vezes este valor.

“Apenas algumas galáxias com este efeito de lente gravitacional tinham sido descobertas anteriormente nos comprimentos de onda do submilímetro, mas agora o SPT e o ALMA descobriram dúzias delas”, disse Carlos de Breuck (ESO), um membro da equipe. “Este tipo de ciência era feita anteriormente nos comprimentos de onda do visível com o Telescópio Espacial Hubble, mas os nossos resultados mostram que o ALMA é uma ferramenta muito mais poderosa neste campo de investigação”.

Notas

[1] As observações adicionais foram obtidas com o APEX, o VLT, o Australia Telescope Compact Array (ATCA) e o Submillimeter Array (SMA).

Mais Informações

Este trabalho foi descrito no artigo “Dusty starburst galaxies in the early Universe as revealed by gravitational lensing”, de J. Vieira et al., publicado na revista Nature. O trabalho de medição das distâncias às galáxias foi descrito no artigo “ALMA redshifts of millimeter-selected galaxies from the SPT survey: The redshift distribution of dusty star-forming galaxies”, de A. Weiss et al., publicado na revista especializada Astrophysical Journal. O estudo das lentes gravitacionais foi descrito no artigo “ALMA observations of strongly lensed dusty star-forming galaxies”, de Y. Hezaveh et al., também publicado na revista especializada Astrophysical Journal.

O Atacama Large Millimeter/submillimeter Array (ALMA), uma infraestrutura astronômica internacional, é uma parceria entre a Europa, a América do Norte e o Leste Asiático, em cooperação com a República do Chile. O ALMA é financiado na Europa pelo Observatório Europeu do Sul (ESO), na América do Norte pela Fundação Nacional para a Ciência dos Estados Unidos (NSF) em cooperação com o Conselho Nacional de Investigação do Canadá (NRC) e no Leste Asiático pelos Institutos Nacionais de Ciências da Natureza (NINS) do Japão em cooperação com a Academia Sínica (AS) da Ilha Formosa. A construção e operação do ALMA é coordenada pelo ESO, em prol da Europa, pelo Observatório Nacional de Rádio Astronomia (NRAO), que é gerido, pela Associação de Universidades (AUI), em prol da América do Norte e pelo Observatório Astronômico Nacional do Japão (NAOJ), em prol do Leste Asiático. O Joint ALMA Observatory (JAO) fornece uma liderança e direção unificadas na construção, comissionamento e operação do ALMA.

O ESO é a mais importante organização europeia intergovernamental para a pesquisa em astronomia e é o observatório astronômico mais produtivo do mundo. O ESO é  financiado por 15 países: Alemanha, Áustria, Bélgica, Brasil, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Portugal, Reino Unido, República Checa, Suécia e Suíça. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e funcionamento de observatórios astronômicos terrestres de ponta, que possibilitam aos astrônomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação nas pesquisas astronômicas. O ESO mantém em funcionamento três observatórios de ponta, no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope, o observatório astronômico óptico mais avançado do mundo e dois telescópios de rastreio. O VISTA, o maior telescópio de rastreio do mundo que trabalha no infravermelho e o VLT Survey Telescope, o maior telescópio concebido exclusivamente para mapear os céus no visível. O ESO é o parceiro europeu do revolucionário telescópio  ALMA, o maior projeto astronômico que existe atualmente. O ESO está planejando o European Extremely Large Telescope, E-ELT, um telescópio de 39 metros que observará na banda do visível e infravermelho próximo. O E-ELT será “o maior olho no céu do mundo”.

Fonte:

http://www.eso.org/public/brazil/news/eso1313/

alma_modificado_rodape105

Sérgio Sacani

Formado em geofísica pelo IAG da USP, mestre em engenharia do petróleo pela UNICAMP e doutor em geociências pela UNICAMP. Sérgio está à frente do Space Today, o maior canal de notícias sobre astronomia do Brasil.

Veja todos os posts

Arquivo