fbpx
18 de dezembro de 2024

Explosão Em Ondas De Rádio Enigmática Ilumina Halo de Galáxia

Com o auxílio do Very Large Telescope do ESO, os astrônomos observaram pela primeira vez uma rápida explosão de ondas rádio passando por um halo galáctico. Com uma duração de menos de um milissegundo, esta enigmática explosão de ondas rádio cósmicas chegou quase imperturbável até à Terra, sugerindo assim que o halo da galáxia atravessado tem uma densidade surpreendentemente baixa e um campo magnético bastante fraco. Esta nova técnica poderá ser usada para explorar halos esquivos de outras galáxias.

Utilizando um mistério cósmico para investigar outro, os astrônomos analisaram o sinal de uma rápida explosão rádio no intuito de estudarem o gás difuso existente no halo de uma galáxia massiva [1]. Em novembro de 2018, o radiotelescópio ASKAP (Australian Square Kilometre Array Pathfinder) observou uma rápida explosão de ondas rádio, chamada FRB 181112. Observações de acompanhamento com o Very Large Telescope (VLT) e outros telescópios revelaram que os pulsos de rádio passaram pelo halo de uma galáxia massiva na sua trajetória até à Terra. Essa descoberta permitiu que os astrônomos analisassem o sinal de rádio em busca de pistas sobre a natureza do halo de gás.

“O sinal da rápida explosão rádio expôs a natureza do campo magnético existente em torno da galáxia e a estrutura do halo de gás. O estudo demonstra uma nova técnica para explorar a natureza de halos de galáxia,” disse J. Xavier Prochaska, professor de Astronomia e Astrofísica na Universidade de Santa Cruz, Califórnia, EUA, e autor principal de um artigo científico que apresenta estes novos resultados e que foi publicado hoje na revista Science.

Os astrônomos ainda não sabem o que causa as rápidas explosões de ondas rádio e apenas recentemente conseguiram localizar as galáxias que deram origem a alguns destes novos sinais rádio muito brilhantes e curtos. “Assim que sobrepusemos as imagens rádio e visíveis, vimos logo que esta explosão rádio passava pelo halo de uma galáxia localizada perto de nós e que, pela primeira vez, tínhamos uma maneira direta de investigar a matéria invisível que cercava essa galáxia,” disse a co-autora do artigo Cherie Day, estudante de doutorado na Universidade de Tecnologia de Swinburne, na Austrália.

Um halo galáctico contém matéria escura e comum – ou bariônica – essencialmente sob a forma de um gás ionizado quente. Enquanto a parte luminosa de uma galáxia massiva pode ter uma dimensão de cerca de 30 000 anos-luz, o seu halo aproximadamente esférico apresenta um diâmetro dez vezes maior. O gás do halo alimenta a formação estelar, à medida que se move em direção ao centro da galáxia, enquanto outros processos, tais como explosões de supernovas, podem lançar material para fora das regiões de formação estelar e em direção ao halo galáctico. Uma razão pela qual os astrônomos querem estudar o gás do halo é entender melhor esses processos de ejeção que podem interromper a formação de estrelas.

“O halo desta galáxia é surpreendentemente calmo,” diz Prochaska. “O sinal rádio passou pela galáxia quase sem ser perturbado, o que contradiz modelos anteriores que previam o que deveria acontecer a explosões rádio nestas circunstâncias.”

O sinal de FRB 181112 era composto por diversos pulsos, cada um com menos de 40 microssegundos de duração (10 mil vezes mais curto que um piscar de olhos). A curta duração dos pulsos impõe um limite superior à densidade do gás do halo, uma vez que a passagem por um meio mais denso aumentaria a duração do sinal rádio. Os pesquisadores calcularam que a densidade do gás do halo deverá ser inferior a 0,1 átomo por centímetro cúbito (equivalente a algumas centenas de átomos em um volume do tamanho do balão de uma criança) [2].

“Tal como o ar cintila num dia quente de verão, a atmosfera tênue nesta galáxia massiva deveria distorcer o sinal da rápida explosão de ondas rádio. Em vez disso, recebemos um sinal tão puro e nítido que não existe praticamente nenhuma assinatura do gás por onde passou,” disse o co-autor Jean-Pierre Macquart, astrônomo no International Center for Radio Astronomy Research da Universidade de Curtin, na Austrália.

O estudo não encontrou evidências de nuvens turbulentas frias ou pequenos nodos densos de gás frio. O sinal de rádio também nos deu informação sobre o campo magnético do halo, o qual é muito fraco — um bilhão de vezes mais fraco que o de um ímã de geladeira.

Neste ponto, com resultados para apenas um halo galáctico, os pesquisadores não podem dizer se a densidade baixa e campo magnético fraco que mediram são incomuns ou se estudos anteriores de halos galácticos superestimaram estas propriedades. Prochaska espera que o ASKAP e outros radiotelescópios usem mais rápidas explosões de ondas rádio para estudarem outros halos galácticos e investigar as suas propriedades.

“Esta galáxia pode ser especial,” disse Prochaska. “Temos que utilizar rápidas explosões de ondas rádio para estudar dezenas ou centenas de galáxias com uma grande variedade de massas e idades para avaliar toda a população.” Telescópios ópticos como o VLT do ESO desempenham um papel importante ao revelar quão longe se encontra a galáxia que deu origem a cada explosão de ondas rádio, assim como se a explosão passou através do halo de alguma galáxia situado mais perto de nós.

Fonte:

https://www.eso.org/public/brazil/news/eso1915/

https://www.eso.org/public/archives/releases/sciencepapers/eso1915/eso1915a.pdf

Sérgio Sacani

Formado em geofísica pelo IAG da USP, mestre em engenharia do petróleo pela UNICAMP e doutor em geociências pela UNICAMP. Sérgio está à frente do Space Today, o maior canal de notícias sobre astronomia do Brasil.

Veja todos os posts

Arquivo