fbpx
23 de novembro de 2024

ESO Divulga O Primeiro Espectro de Exoplaneta Obtido na Luz Visível

Artist’s impression of the exoplanet 51 Pegasi b

Com o auxílio do instrumento HARPS, o principal “caçador” de exoplanetas instalado no Observatório de La Silla no Chile, astrônomos detectaram pela primeira vez de forma direta o espectro visível refletido por um exoplaneta. Estas observações revelaram também novas propriedades deste objeto famoso, o primeiro exoplaneta a ser descoberto em torno de uma estrela normal: 51 Pegasi b. O resultado promete um futuro brilhante para a técnica utilizada, particularmente com o advento da nova geração de instrumentos, tais como o ESPRESSO, para o VLT, e futuros telescópios como o E-ELT.

O exoplaneta 51 Pegasi b [1] situa-se a cerca de 50 anos-luz da Terra na constelação do Pégaso. Foi descoberto em 1995 e será lembrado para sempre como o primeiro exoplaneta confirmado descoberto em órbita de uma estrela normal, como o Sol [2]. É também considerado o arquétipo dos exoplanetas do tipo Júpiter quente – uma classe de planetas que se sabe agora serem bastante comuns, e que são semelhantes a Júpiter em termos de massa e de tamanho, mas com órbitas muito mais próximas das suas estrelas progenitoras.

Desde esta descoberta crucial, foi já confirmada a existência de mais de 1900 exoplanetas em 1200 sistemas planetários, no entanto, no ano em que a sua descoberta faz 20 anos, 51 Pegasi b volta à cena para fazer avançar uma vez mais o estudo dos exoplanetas.

The star 51 Pegasi in the constellation of Pegasus

A equipe que fez esta nova detecção foi liderada por Jorge Martins do Instituto de Astrofísica e Ciências do Espaço (IA) e da Universidade do Porto, que atualmente faz o seu doutoramento no ESO, no Chile. A equipe utilizou o instrumentoHARPS montado no telescópio de 3,6 metros do ESO no Observatório de La Silla, no Chile.

Atualmente, o método mais utilizado para estudar a atmosfera de um exoplaneta consiste em observar o espectro da estrela hospedeira quando este é filtrado pela atmosfera do planeta durante um trânsito – uma técnica chamada espectroscopia de transmissão. Uma aproximação alternativa será observar o sistema quando a estrela passa em frente do planeta, o que dará essencialmente informação sobre a temperatura do exoplaneta.

Wide-field view of the sky around the star 51 Pegasi

A nova técnica não depende de um trânsito planetário, por isso pode potencialmente ser usada para estudar muito mais exoplanetas, e permite que o espectro planetário seja detectado diretamente no visível, o que significa que características diferentes do planeta, que não são acessíveis através de outras técnicas, possam ser inferidas.

O espectro da estrela hospedeira é usado como modelo para procurar uma assinatura semelhante, que se espera que seja refletida pelo planeta que a orbita. Trata-se de uma tarefa extremamente difícil já que os planetas são muitíssimo tênues quando comparados com as suas estrelas progenitoras resplandecentes.

O sinal emitido pelo planeta é também muito facilmente diluído por outros pequenos efeitos e fontes de ruído [3]. Perante tal adversidade, o sucesso da técnica utilizada quando aplicada aos dados do HARPS relativos ao 51 Pegasi b, valida o conceito de forma muito valiosa.

Jorge Martins explica: “Este tipo de técnica de detecção tem uma grande importância científica, já que nos permite medir a massa real do planeta e a sua inclinação orbital, o que é essencial para compreendermos completamente o sistema. Permite-nos também estimar a refletividade do planeta, ou albedo, o que pode ser depois usado para inferir a composição tanto da superfície do planeta como da sua atmosfera”.

Descobriu-se que 51 Pegasi b tem uma massa de cerca de metade da de Júpiter e uma órbita com uma inclinação de cerca de nove graus na direção da Terra [4]. O planeta parece também ser maior que Júpiter em termos de diâmetro e extremamente refletivo. Estas são propriedades típicas de um planeta do tipo Júpiter quente, que se encontra muito próximo da sua estrela progenitora e por isso exposto a intensa radiação estelar.

HARPS foi essencial para o trabalho efetuado pela equipe, mas o fato do resultado ter sido obtido com o telescópio de 3,6 metros do ESO, que tem um limite de aplicação da técnica, constitui uma boa notícia para os astrônomos. O equipamento que existe atualmente será ultrapassado por instrumentos muito mais avançados instalados em telescópios maiores, tais como o Very Large Telescope do ESO e o futuro European Extremely Large Telescope [5].

“Esperamos com impaciência a primeira luz do espectrógrafo ESPRESSO que será montado no VLT, com o qual faremos estudos mais detalhados sobre este e outros sistemas planetários”, conclui Nuno Santos, do IA e Universidade do Porto, co-autor do novo artigo científico que descreve estes resultados.

Fonte:

http://www.eso.org/public/brazil/news/eso1517/

Sérgio Sacani

Formado em geofísica pelo IAG da USP, mestre em engenharia do petróleo pela UNICAMP e doutor em geociências pela UNICAMP. Sérgio está à frente do Space Today, o maior canal de notícias sobre astronomia do Brasil.

Veja todos os posts

Arquivo